Tuesday, October 11, 2011

New form of superhard carbon observed

Tuesday, October 11, 2011

Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists at Carnegie's Geophysical Laboratory are part of a team that has discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond. This discovery will be published in Physical Review Letters.

The team was led by Stanford's Wendy L. Mao and her graduate student Yu Lin and includes Carnegie's Ho-kwang (Dave) Mao, Li Zhang, Paul Chow, Yuming Xiao, Maria Baldini, and Jinfu Shu. The experiment started with a form of carbon called glassy carbon, which was first synthesized in the 1950s, and was found to combine desirable properties of glasses and ceramics with those of graphite. The team created the new carbon allotrope by compressing glassy carbon to above 400,000 times normal atmospheric pressure.

This new carbon form was capable of withstanding 1.3 million times normal atmospheric pressure in one direction while confined under a pressure of 600,000 times atmospheric levels in other directions. No substance other than diamond has been observed to withstand this type of pressure stress, indicating that the new carbon allotrope must indeed be very strong.

However, unlike diamond and other crystalline forms of carbon, the structure of this new material is not organized in repeating atomic units. It is an amorphous material, meaning that its structure lacks the long-range order of crystals. This amorphous, superhard carbon allotrope would have a potential advantage over diamond if its hardness turns out to be isotropic?that is, having hardness that is equally strong in all directions. In contrast, diamond's hardness is highly dependent upon the direction in which the crystal is oriented.

"These findings open up possibilities for potential applications, including super hard anvils for high-pressure research and could lead to new classes of ultradense and strong materials," said Russell Hemley, director of Carnegie's Geophysical Laboratory.

###

Carnegie Institution: http://www.ciw.edu

Thanks to Carnegie Institution for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 47 time(s).

Source: http://www.labspaces.net/114182/New_form_of_superhard_carbon_observed

the raven lawrence o donnell kelly ripa conrad murray conrad murray fresno state fresno state

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.